
Anyleaf Power module (CAN) January 2024

General Description
The AnyLeaf power module accepts a battery input of up to 36V (For example, an 8S LiPo), and
outputs power at 5V, and either 7.4V or 12V, selected by a jumper. Each of these two output lines
can supply up to 3A of current. The maximum voltage of the backup battery is 26V(4S).

This device is intended to be used with small unmanned vehicles, but can be used more broadly. It
powers electronics and servos, and periodically measures and broadcasts the following information
over CAN:

- Main battery voltage
- Backup battery voltage and current
- Cell voltage for up to 6 battery cells
- Voltage and current on the 5V output
- Voltage and current on the 7.4V or 12V output
- Estimated battery life remaining, in time, and portion used
- Battery in use

Broadcast rate, and enabling is customizable for any of these properties.

This device uses the DroneCAN protocol, and is compatible with any flight controller that
implements the applicable DroneCAN messages.

Specifications
• Dimensions: 69 × 49 × 17 (height) mm. 92mm width with tabs

• Mounting holes: 2 × M4, spaced 80mm

• Weight: 48 grams

• Power input: 5 – 36V, via XT-60, XT-30, or USB.

• Maximum input battery voltage: 36V(8S)

• Maximum input backup battery voltage: 26V(6S)

• Maximum individual cell voltage, if connected: 4.5V

• Power output 1: 5V, via 2xJST-GH CAN connectors, or MR-30. 1 amp each.

• Power output 2: 7.4V or 12V, via an MR-30 connector. 3 amps.

• Power output 2 selection: 2-pin jumper, with 2.54mm spacing.

• MCU: STM32G431. 170Mhz Cortex-M4

• Update capability: USB-C, CAN

Page 1 / 10

• Bus compatibility: DroneCAN

• CAN tranceiver: NXP TJA1051TK/3

• CAN version: CAN-FD capable

• CAN headers: 2 × JST GH, 1.25mm pitch

• Max CAN datarate: 5Mbps

• Flight controller firmware compatibility: Ardupilot, and PX4. Compatible with any
firmware that supports the applicable DroneCAN message types.

Power output description
This device outputs power on two lines: A 5V line, and a 7.4V or 12V line. The 5V line is intended
to power electronics via its CAN connection on one of the JST-GH ports. This can include flight
controllers, GNSS devices, AHRS systems, and other sensors. A maximum of 1A is supported on
each GH port. This line is shared with a MR30 connector, and the combined current draw on this
line must remain below 3A. The MR30 is intended to power servos.

The 7.4V and 12V line is intended to power servos, and video transmission systems. An included
2.54mm, 2-pin jumper selects the voltage on this line. Leave unconnected for 7.4V, or connect it
for 12V. Current on this line must not exceed 3A.

If the 5V line voltage measures bettween 4.8V and 5.2V, a 5V healthy LED will illuminate green. If
the second power line voltage measures between 7.2V and 7.6V, or between 11.7V and 12.3V, a
7V healthy LED will illuminate green. Note that if the module is powered only by USB, it is likely
that neither of these will light, due to power on the 5V line being potentially between 4.5V and
4.8V.

Backup battery description
An optional backup battery can be connected using the XT-30 connector. The maximum voltage
supported on this battery is 26V (6S). If the primary battery voltage drops below 7V for whatever
reason, this battery immediately takes over, with no power loss. The intent behind this behavior is
to connect a lightweight secondary battery capable of powering electronics and servos. If the main
battery is inadvertently disconnected, runs out of power, or otherwise has a fault, this can allow
safe recovery of fixed-wing aircraft, and easier recovery by keeping systems other than propulsion
online. If main battery power is restored, normal operation continues. An amber LED towards the
top-left of the device indicates that the backup battery is in use. When not in use, it experiences
minimal current draw.

Important: The backup battery must not exceed primary battery voltage. For example, if using a
6S main battery, use a 4S backup or lower. Otherwise, the backup battery may drain itself
prematurely.

Page 2 / 10

Cell voltage measurement
This device measures up to 6 individual battery cells. (It can’t measure voltage on cells 7 and 8
due to space requirements). It connects to cells using a balance connector, with 2.54mm spacing.
It is non-latching, to accommodate balance connectors of varying cell count. It assumes battery
cells are connected in series. This connector is purely for measurement: It doesn’t draw current
from these pins. Make sure to connect the balance connector to this according to the markings
next to it! Doing this incorrectly (Backwards, or shifted) can cause permanent damage to this
device’s CPU by overvolting its ADC pins!

Integrating with your aircraft
This device connects with aircraft systems using a 4-pin connection header; this powers the
device, and allows two-way communication over CAN. It uses a JST-GH header, with connections
labeled on the enclosure for 5V power, CAN data high, CAN data low, and ground. Because CAN is
a bus, multiple peripherals can use these same wires for power and data, and routing can be set
up in a way that makes sense for a given aircraft geometry. This device (and many CAN devices)
includes two CAN connectors: This can be used to simplify wiring: For example, run one CAN cable
from the flight controller to one of this device’s connectors. Run another wire from this device’s
second connector to another CAN device in the same area of the aircraft.

Protocol description
This device is compatible with DroneCAN, and can exist on busses that include other DroneCAN
devices. It periodically broadcasts information from its onboard sensors. The broadcast rate of this
information is customization, either using PC software available on the AnyLeaf website, using the
USB-C connection on the device, or via a CAN configuration message.

Most messages broadcast by this device are included in the Dronecan List of standard data types:
https://dronecan.github.io/Specification/7._List_of_standard_data_types/. A notable exception is
the configuration setup uses a custom data type.

The standard data type use allows for compatibility with any flight control firmware that supports
the DroneCAN standard. (For example, Ardupilot, and PX4.)

Messages periodically broadcast:

- Circuit status (uavcan.equipment.power.CircuitStatus)
- Power Supply Stats (uavcan.equipment.power.PrimaryPowerSupplyStatus)
- AnyLeaf power stats (Custom)
- Node status (uavcan.protocol.NodeStatus)

Page 3 / 10

https://dronecan.github.io/Specification/7._List_of_standard_data_types/

Messages accepted:

- Node info request (uavcan.protocol.GetNodeInfo)

- Dynamic node ID allocation (uavcan.protocol.dynamic_node_id/Allocation)

- Node restart (uavcan.protocol.RestartNode)

- Get/Set parameters (uavcan.protocol.param.GetSet)

DroneCAN protocol
This device uses the DroneCAN protocol. Information about its wire protocol can be found in its
specification here; most notably in chapter 4:
https://dronecan.github.io/Specification/4._CAN_bus_transport_layer/

The CAN ID format is as follows. Most messages broadcast by this device, including all sensor
readings, use the Message frame format.

The first two bytes of every message is the CRC; information on decoding it is found in the
DroneCAN Spec linked above. The final byte in each frame called is the tail byte; this uses the
following format, and contains information describing if a payload is contained in a single frame,
or split across multiple ones:

Page 4 / 10

https://dronecan.github.io/Specification/4._CAN_bus_transport_layer/

Payload contents for the message types this device broadcasts are described below.

AnyLeaf power stats format. All voltages are in mV. All currents are in mA.

Bytes Description Data type

0-1 Primary battery voltage 16-bit unsigned integer

2-3 Backup battery voltage 16-bit unsigned integer

4-5 Voltage on the 5V line 16-bit unsigned integer

6-7 Voltage on the 7.4V or 12V line 16-bit unsigned integer

8-9 Battery cell 1 voltage 16-bit unsigned integer

10-11 Battery cell 2 voltage 16-bit unsigned integer

12-13 Battery cell 3 voltage 16-bit unsigned integer

14-15 Battery cell 4 voltage 16-bit unsigned integer

16-17 Battery cell 5 voltage 16-bit unsigned integer

18-19 Battery cell 6 voltage 16-bit unsigned integer

20-21 (unused) 16-bit unsigned integer

22-23 (unused) 16-bit unsigned integer

24-25 (unused) 16-bit unsigned integer

26-27 Backup battery current 16-bit unsigned integer

28-29 Current on the 5V line 16-bit unsigned integer

30-31 Current on the 7.4V or 12V line 16-bit unsigned integer

32 Estimated portion through of the primary battery, on a scale of 0 - 255 8-bit unsigned integer

33-34 Estimated time remaining on the main battery, in seconds 16-bit unsigned integer

35 Battery in use: 0 for primary, 1 for backup, 2 for none 8-bit unsigned integer

Node status format:

This device periodically broadcasts the DroneCAN Node Status message. This message reports the
following information:

Bits Description Data type

0-31 Timestamp since node start in μs 32-bit unsigned integer

Page 5 / 10

32-34 Node health Enum: 0: OK; 1:Warning; 2: Error; 3: Critical.

35-38 Node mode Enum: Operational; 1: Initialization;2:
Maintenance; 3: Software update; 7: Offline

This device responds to DroneCAN GetNodeInfo and Restart requests. The node info response
contains the node status message above, and additional information about software version,
hardware version, and the node name. The serialization format for this info is somewhat
complicated, and is beyond the scope of this datasheet.

This device responds to dynamic node ID allocation requests, if the Dynamic node ID allocation
setting, described below, is enabled. (It is enabled by default)

Configurable parameters
The following parameters can be customized. These settings are stored in non-volatile memory,
and take effect after the device is restarted.

Node Id
Either hard-sets the node ID, or specifies the desired node ID to send to the ID allocator. See the
Dynamic node ID allocation setting for details on this. Defaults to 70.

Dynamic node ID allocation
If set to true, node ID is determined by the DroneCAN dynamic node ID allocation process, and ID
is 0 until assigned. (Broadcasts are anonymous, as defined in DroneCAN. In this case, the Node
ID settings determines the desired ID to send to the allocator. If false, the Node Id settings is hard
set as the ID. Defaults to true.

FD mode
Enable this to support frame-lengths up to 64 bytes. If disabled, only 8-byte frames are
supported. You should only enable this if your flight controller supports and is configured to use
FD mode. Defaults to disabled.

Note: If broadcasting AHRS, IMU data or fused positions at a high data rate, FD mode with a
sufficiently high bit rate may be required.

CAN bit rate
Select the data bit rate to use. This has discrete settings available: 250kbps, 500kpbs, 1Mbps,
2Mbps, 4Mbps, and 5Mbps. You should only enable values higher than 1Mbps if your flight
controller supports and is configured to use FD mode. Defaults to 1Mbps.

Page 6 / 10

Configuring and updating using Mission Planner or
QGroundControl
It’s possible to configure this device’s settings using Mission Planner, QgroundControl, or any
other software that implements DroneCAN’s Parameter Get Set API.

This image shows the parameter set API in Mission Planner:

Page 7 / 10

Configuring and updating over USB
To configure, update, and view device status over USB, download and run the AnyLeaf CAN
Preflight software, from the link on the Anyleaf website’s page for this product. This lets you view
and change settings, as well as view system status, as well as sensor readings including position
and attitude.

Configuring Ardupilot CAN settings
There are several CAN settings in ArduPilot that may need to be enabled or modified to make this
device work. These are accessed by selecting the Config button at the top left of Mission Planner,
then selected Full Parameter List from the menu at the left. You can then use the search window
at the right to find these settings. The following settings are the most relevant:

CAN_P1_DRIVER = 1 ("Enables use of CAN buses")
BAT_MONITORx = 9 (CAN; x is the battery monitor you wish to configure.)

Page 8 / 10

If using FD mode or a different bit rate from the default, adjust these settings as required:

CAN_D1_UC_OPTION: enable FD (Value of 4, if no other flags here are set.)
CAN_P1_FDBITRATE: enum for FD bit rate. 1 for 1Mb. Defaults to 4 for 4mb. Select 5 for this
device’s maximum of 5Mbps.
CAN_P1_BITRATE = 1000000 Bitrate if using classic (non-FD) mode.

If troubleshooting, confirm CAN_D1_PROTOCOL = 1 (This selects DroneCAN as the CAN protocol).
This should be set by default. You can set CAN_SLCAN_CPORT = 1 to enable reading CAN
messages from a PC, eg using the DroneCAN GUI software.

The below image shows most of the ArduPilot CAN settings:

For more information, reference the ArduPilot CAN setup documentation:
https://ardupilot.org/copter/docs/common-canbus-setup-advanced.html

Page 9 / 10

https://ardupilot.org/copter/docs/common-canbus-setup-advanced.html

FD CAN and Classic CAN selection
ArduPilot, PX4, and this device all default to using classic CAN; this is a good choice for
compatibility. If any nodes on a given bus do not support FD mode, classic is the only viable
option for that bus. If all devices support FD mode, selecting it, with the maximum bitrate
supported by all nodes on the bus is the best option. Enabling FD mode with a high bitrate may be
required if there are many devices on the bus, or a device is sending high-bandwidth data. This
device, if configured to send AHRS or fused position data at a high rate, may saturate a low-
bitrate bus.

This device supports FD mode, with a datarate up to 5Mbps. If all other devices on the bus
support this, this is the recommended setting. Important: This device and any devices on the bus
it communicates with (notably the flight controller) must be configured the same way in regards
to FD mode vice classic mode, and datarate.

Updating firmware
This device’s firmware can be updated over USB. To do so, download firmware from the AnyLeaf
website. Open the device’s lid.

Mounting on smaller frames
If you wish to mount this device on frames that do not accommodate the plastic enclosure, you
can remove the bare circuit board and mount it directly. To remove the circuit board, press gently
on the front and back of the lid, while pulling it away from the base. Once removed, the PCB can
be removed from the enclosure by removing the 4 Phillips screws securing it to the base.

The base circuit board can be mounted using its 28mm-spaced M3 mounting holes, or by applying
an adhesive or securing mechanism to its bottom surface.

Support
If you have any questions, or support requests, contact us by email: anyleaf@anyleaf.org.

© 2023 AnyLeaf LLC

Page 10 / 10

