
Anyleaf GNSS (CAN) September 2023

General Description
The AnyLeaf CAN GNSS is a small device that transmits position data over CAN. It’s intended to be
used with small unmanned aircraft. It periodically measures and broadcasts the following
information:

- GNSS (GPS) fix and Dilution of Precision (DOP) information
- Barometric pressure
- Magnetometer data (3-axis)
- Fused position from the GNSS and IMU data
- Raw IMU readings (3-axis accelerometer and 3-axis gyroscope)
- AHRS solution (estimated attitude)

Broadcast rate, and enabling is customizable for any of these properties.

This device uses the DroneCAN protocol, and is compatible with any flightcontroller that
implements the applicable DroneCAN messages.

Specifications

• Dimensions: 49 × 49 × 17 (height) mm. 70mm width with tabs

• Mounting holes: 2 × M4, spaced 60.4mm

• Weight: 28 grams

• Power input: 5V, via CAN or USB-C

• MCU: STM32G431. 170Mhz Cortex-M4

• GNSS device: Ublox SAM-M10Q

• Inertial Measurement Unit (IMU): TDK ICM-42688p

• Barometer (pressure altimeter): Infineon DPS-310

• Magnetometer: ST LIS3MDL

• Update capability: USB-C, CAN

• Bus compatibility: DroneCAN

• CAN tranceiver: NXP TJA1051TK/3

• CAN version: CAN-FD capable

• CAN headers: 2 × JST GH, 1.25mm pitch

Page 1 / 13

• Max CAN datarate: 5Mbps

• GNSS fix rate: Up to 10Hz

• Pressure and temperature update rate: Up to 32Hz

• Magnetometer update rate: 155Hz

• Position update rate with IMU and baro fusing: Up to 1kHz

• AHRS and IMU data update rate: Up to 1kHz

• Flight controller firmware compatibility: Ardupilot, and PX4. Compatible with any
firmware that supports the applicable DroneCAN message types.

Integrating with your aircraft
This device connects with aircraft systems using a 4-pin connection header; this powers the
device, and allows two-way communication over CAN. It uses a JST-GH header, with connections
labeled on the enclosure for 5V power, CAN data high, CAN data low, and ground. Because CAN is
a bus, multiple peripherals can use these same wires for power and data, and routing can be set
up in a way that makes sense for a given aircraft geometry. This device (and many CAN devices)
includes two CAN connectors: This can be used to simplify wiring: For example, run one CAN cable
from the flight controller to one of this device’s connectors. Run another wire from this device’s
second connector to another CAN device in the same area of the aircraft.

Protocol description
This device is compatible with DroneCAN, and can exist on busses that include other DroneCAN
devices. It periodically broadcasts information from its onboard sensors. The broadcast rate of this
information is customization, either using PC software available on the AnyLeaf website, using the
USB-C connection on the device, or via a CAN configuration message.

Most messages broadcast by this device are included in the Dronecan List of standard data types:
https://dronecan.github.io/Specification/7._List_of_standard_data_types/. A notable exception is
the configuration setup uses a custom data type.

The standard data type use allows for compatibility with any flight control firmware that supports
the DroneCAN standard. (For example, Ardupilot, and PX4.)

Messages periodically broadcast:

- Gnss fix. (uavcan.equipment.gnss.Fix2)

- Static air pressure (uavcan.equipment.air_data.StaticPressure)

- Air temperature (uavcan.equipment.air_data.StaticTemperature)

Page 2 / 13

https://dronecan.github.io/Specification/7._List_of_standard_data_types/

- Magnetic field strength (uavcan.equipment.ahrs.MagneticFieldStrength2)

- IMU data (uavcan.equipment.ahrs.RawIMU)

- Fused position, from GNSS and IMU (uavcan.equipment.navigation.GlobalNavigationSolution, or
optionally a custom format that is more compact)

- Node status (uavcan.protocol.NodeStatus)

Messages accepted:

- Node info request (uavcan.protocol.GetNodeInfo)

- Dynamic node ID allocation (uavcan.protocol.dynamic_node_id/Allocation)

- Node restart (uavcan.protocol.RestartNode)

- Get/Set parameters (uavcan.protocol.param.GetSet)

DroneCAN protocol
This device uses the DroneCAN protocol. Information about its wire protocol can be found in its
specification here; most notably in chapter 4:
https://dronecan.github.io/Specification/4._CAN_bus_transport_layer/

The CAN ID format is as follows. Most messages broadcast by this device, including all sensor
readings, use the Message frame format.

Page 3 / 13

https://dronecan.github.io/Specification/4._CAN_bus_transport_layer/

The first two bytes of every message is the CRC; information on decoding it is found in the
DroneCAN Spec linked above. The final byte in each frame called is the tail byte; this uses the
following format, and contains information describing if a payload is contained in a single frame,
or split across multiple ones:

Payload contents for the message types this device broadcasts are described below.

GNSS Fix (position, velocity, time) format:

This device broadcasts GNSS fixes using the DroneCAN Fix2 message. This uses the following bit-
aligned payload format:

Page 4 / 13

Bits Description Data type

0-63 Timestamp since node start in μs 56-bit unsigned integer

64-119 GNSS timestamp in μs since January 1, 1970 56-bit unsigned integer

120-122 GNSS time standard Enum: 0: None; 1: TAI; 2: UTC;
3: GPS

136-143 Number of leap seconds included in the GNSS timestamp unsigned integer

144-180 Longitude, in degrees divided by 100,000,000 signed 37-bit integer

181-217 Latitude, in degrees divided by 100,000,000 signed 37-bit integer

218-244 Height above ellipsoid, in mm; signed integer signed 27-bit integer

245-271 Height above Mean Sea Level (MSL), in mm signed 27-bit integer

272-303 Velocity, north component, in m/s 32-bit floating point

304-335 Velocity, east component, in m/s 32-bit floating point

336-367 Velocity, down component, in m/s 32-bit floating point

368-373 Number of satellites used unsigned integer

374-375 Fix status Enum: No fix; 1: Time only; 2:
2D fix; 3: 3D fix

376-379 GNSS mode (Currently only uses Single mode) Enum: 0: Single; 1: DGPS; 2:
RTK; 3: PPP

380-385 GNSS sub mode. (Currently unused)

392-407 Position covariance matrix diagonal values; values with order: North-
North, North-East, North-Down, East-East, East-Down, Down-Down

16-bit floating point [6]

408-423 Positional dilution of precision (PDOP) 16-bit floating point

Magnetic field strength format (ie magnetometer readings):

This device broadcasts magnetic field strength readings using the DroneCAN Magnetic Field
Strength 2 message. Reference the visual axis depiction on top of the device for definitions of
these axes. This uses the following payload format:

Bytes Description Data type

0 Sensor ID 8-bit unsigned integer

1-2 Magnetic field strength along the X axis 16-bit floating point

3-4 Magnetic field strength along the Y axis 16-bit floating point

5-6 Magnetic field strength along the Z axis 16-bit floating point

Pressure format (ie barometer):

This device broadcasts pressure readings using the DroneCAN Static Pressure message. This uses
the following payload format:

Bytes Description Data type

0-3 Pressure in Pascals 32-bit floating point

Page 5 / 13

IMU format (accelerometer and gyroscope):

This device broadcasts IMU readings using the DroneCAN Raw IMU message. Reference the visual
axis depiction on top of the device for definitions of these axes. This uses the following format:

Bytes Description Data type

0-6 Timestamp since node start in μs 56-bit unsigned integer

11-12 Gyroscope X axis reading in radians/seconds 16-bit floating point

13-14 Gyroscope Y axis reading in radians/seconds 16-bit floating point

15-16 Gyroscope Z axis reading in radians/seconds 16-bit floating point

29-30 Gyroscope X axis reading in radians/seconds 16-bit floating point

31-32 Gyroscope Y axis reading in radians/seconds 16-bit floating point

23-34 Gyroscope Z axis reading in radians/seconds 16-bit floating point

Attitude and Heading Reference System (AHRS) format:

This device broadcasts IMU readings using the DroneCAN AHRS Solution message. Reference the
visual axis depiction on top of the device for definitions of these axes. Attitude is represented as a
unit-length quaternion that uses Hamilton’s conventions. This uses the following format:

Bytes Description Data type

0-6 Timestamp since node start in μs 56-bit unsigned integer

7-8 Attitude quaternion, X component 16-bit floating point

9-10 Attitude quaternion, Y component 16-bit floating point

11-12 Attitude quaternion, Z component 16-bit floating point

13-14 Attitude quaternion, W component 16-bit floating point

15-16 Angular velocity, X component, in radians/second 16-bit floating point

17-18 Angular velocity, Y component, in radians/second 16-bit floating point

19-20 Angular velocity, Z component, in radians/second 16-bit floating point

21-22 Linear acceleration, X component, in m/s² 16-bit floating point

23-24 Linear acceleration, Y component, in m/s² 16-bit floating point

25-26 Linear acceleration, Z component, in m/s² 16-bit floating point

Fused position data:

This device broadcasts fused position data; this is a high-update-rate position solution with fused
data from the GNSS and IMU. The data depicted here is our custom format. By default, this device
outputs the DroneCAN Global Naviation Solution format, which is more complicated. The format
used is selectable when configuring over USB or CAN. Reference the visual axis depiction on top of
the device for definitions of these axes.

Page 6 / 13

Bytes Description Data type

0-7 Timestamp since node start in μs 64-bit unsigned integer

8-15 Latitude, in degrees divided by 100,000,000 64-bit signed integer

16-23 Longitude, in degrees divided by 100,000,000 64-bit signed integer

24-27 Elevation (height above ellipsoid (HAE)) in meters 32-bit floating point

28-31 Elevation (height above mean sea level (MSL)) in meters 32-bit floating point

32-35 Velocity in the north direction, in meters/second 32-bit floating point

36-39 Velocity in the east direction, in meters/second 32-bit floating point

40-43 Velocity in the down direction, in meters/second 32-bit floating point

Node status format:

This device periodically broadcasts the DroneCAN Node Status message. This message reports the
following information:

Bits Description Data type

0-31 Timestamp since node start in μs 32-bit unsigned integer

32-34 Node health Enum: 0: OK; 1:Warning; 2: Error; 3: Critical.

35-38 Node mode Enum: Operational; 1: Initialization;2:
Maintenance; 3: Software update; 7: Offline

This device responds to DroneCAN GetNodeInfo and Restart requests. The node info response
contains the node status message above, and additional information about software version,
hardware version, and the node name. The serialization format for this info is somewhat
complicated, and is beyond the scope of this datasheet.

This device responds to dynamic node ID allocation requests, if the Dynamic node ID allocation
setting, described below, is enabled. (It is enabled by default)

Note on bus saturation
It may be desirable to send certain messages, like IMU data, AHRS position, or fused position at a
high data rate. This device is capable of configuring each of these at up to 1kHz. It’s possible to
saturate a CAN bus when sending multiple packets (especially larger ones) at a high data rate.
Using a higher-speed bus (ie 5Mbps) allows for more data. When configuring which messages to
broadcast and their data rates, ensure you are not saturating the bus. The details depend on what
other devices are present on the bus.

Page 7 / 13

Configurable parameters
The following parameters can be customized. These settings are stored in non-volatile memory,
and take effect after the device is restarted.

Node Id
Either hard-sets the node ID, or specifies the desired node ID to send to the ID allocator. See the
Dynamic node ID allocation setting for details on this. Defaults to 70.

Dynamic node ID allocation
If set to true, node ID is determined by the DroneCAN dynamic node ID allocation process, and ID
is 0 until assigned. (Broadcasts are anonymous, as defined in DroneCAN. In this case, the Node
ID settings determines the desired ID to send to the allocator. If false, the Node Id settings is hard
set as the ID. Defaults to true.

FD mode
Enable this to support frame-lengths up to 64 bytes. If disabled, only 8-byte frames are
supported. You should only enable this if your flight controller supports and is configured to use
FD mode. Defaults to disabled.

Note: If broadcasting AHRS, IMU data or fused positions at a high data rate, FD mode with a
sufficiently high bit rate may be required.

CAN bit rate
Select the data bit rate to use. This has discrete settings available: 250kbps, 500kpbs, 1Mbps,
2Mbps, 4Mbps, and 5Mbps. You should only enable values higher than 1Mbps if your flight
controller supports and is configured to use FD mode. Defaults to 1Mbps.

GNSS broadcast ratio
The device receives GNSS fixes at 10Hz. This ratio configures how often these packets are
transmitted over CAN. A value of 1 transmits every fix. A value of 2 transmits every other fix. A
value of 0 disables fix transmission. The default value of 1 is a good choice, unless there are bus
saturation considerations.

Fused position broadcast rate
This controls how often the fused position solution is broadcast. It can be set between 0Hz and
1kHz. It defaults to 0 (disabled). Note that this message, especially at high data rates, uses a lot
of bandwidth.

Barometer broadcast rate
This determines the rate to broadcast barometer data, in Hz. Can be set between 0 (disabled) and
255Hz. Note that the barometer only receives data at 32Hz, so setting a higher value than this is
unecessary in many cases. Defaults to 32Hz.

Magnetometer broadcast rate

Page 8 / 13

This determines the rate to broadcast magnetometer data, in Hz. Can be set between 0 (disabled)
and 255Hz. Note that the barometer only receives data at 155Hz, so setting a higher value than
this is unecessary in many cases. Defaults to 155Hz.

IMU data broadcast ratio
The device receives IMU data at 1kHz. This ratio configures how often these raw IMU data is
transmitted over CAN. A value of 1 transmits every update A value of 2 transmits every other
update A value of 0 disables transmission. It defaults to 10. (Sends updates at 100Hz) Note that if
you don’t plan to use IMU data, 0 is a good chioce.

Configuring and updating using Mission Planner or
QGroundControl
It’s possible to configure this device’s settings using Mission Planner, QgroundControl, or any
other software that implements DroneCAN’s Parameter Get Set API.

This image shows the parameter set API in Mission Planner:

Page 9 / 13

Configuring and updating over USB
To configure, update, and view device status over USB, download and run the AnyLeaf CAN
Preflight software, from the link on the Anyleaf website’s page for this product. This lets you view
and change settings, as well as view system status, as well as sensor readings including position
and attitude.

Page 10 / 13

Configuring Ardupilot CAN settings
There are several CAN settings in ArduPilot that may need to be enabled or modified to make this
device work. These are accessed by selecting the Config button at the top left of Mission Planner,
then selected Full Parameter List from the menu at the left. You can then use the search window
at the right to find these settings. The following settings are the most relevant:

CAN_P1_DRIVER = 1 ("Enables use of CAN buses")
GPS_TYPE = 9 (DroneCAN)
GPS_AUTO_CONFIG = 2 (Auto config for Serial and DroneCAN)

If using FD mode or a different bit rate from the default, adjust these settings as required:

CAN_D1_UC_OPTION: enable FD (Value of 4, if no other flags here are set.)
CAN_P1_FDBITRATE: enum for FD bit rate. 1 for 1Mb. Defaults to 4 for 4mb. Select 5 for this
device’s maximum of 5Mbps.
CAN_P1_BITRATE = 1000000 Bitrate if using classic (non-FD) mode.

If troubleshooting, confirm CAN_D1_PROTOCOL = 1 (This selects DroneCAN as the CAN protocol).
This should be set by default. You can set CAN_SLCAN_CPORT = 1 to enable reading CAN
messages from a PC, eg using the DroneCAN GUI software.

The below image shows most of the ArduPilot CAN settings:

Page 11 / 13

For more information, reference the ArduPilot CAN setup documentation:
https://ardupilot.org/copter/docs/common-canbus-setup-advanced.html

FD CAN and Classic CAN selection
ArduPilot, PX4, and this device all default to using classic CAN; this is a good choice for
compatibility. If any nodes on a given bus do not support FD mode, classic is the only viable
option for that bus. If all devices support FD mode, selecting it, with the maximum bitrate
supported by all nodes on the bus is the best option. Enabling FD mode with a high bitrate may be
required if there are many devices on the bus, or a device is sending high-bandwidth data. This
device, if configured to send AHRS or fused position data at a high rate, may saturate a low-
bitrate bus.

This device supports FD mode, with a datarate up to 5Mbps. If all other devices on the bus
support this, this is the recommended setting. Important: This device and any devices on the bus
it communicates with (notably the flight controller) must be configured the same way in regards
to FD mode vice classic mode, and datarate.

Page 12 / 13

https://ardupilot.org/copter/docs/common-canbus-setup-advanced.html

Updating firmware
This device’s firmware can be updated over USB. To do so, download firmware from the AnyLeaf
website. Open the device’s lid.

Mounting on smaller frames
If you wish to mount this device on frames that do not accommodate the plastic enclosure, you
can remove the bare circuit board and mount it directly. To remove the circuit board, press gently
on the front and back of the lid, while pulling it away from the base. Once removed, the PCB can
be removed from the enclosure by removing the 4 Phillips screws securing it to the base.

The base circuit board can be mounted using its 28mm-spaced M3 mounting holes, or by applying
an adhesive or securing mechanism to its bottom surface.

Support
If you have any questions, or support requests, contact us by email: anyleaf@anyleaf.org.

© 2023 AnyLeaf LLC

Page 13 / 13

